A Wiener-type graph invariant for some bipartite graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wiener - Type Invariants of Some Graph Operations ∗

Let d(G, k) be the number of pairs of vertices of a graph G that are at distance k, λ a real number, and Wλ(G) = ∑ k≥1 d(G, k)kλ. Wλ(G) is called the Wiener-type invariant of G associated to real number λ. In this paper, the Wiener-type invariants of some graph operations are computed. As immediate consequences, the formulae for reciprocal Wiener index, Harary index, hyperWiener index and Tratc...

متن کامل

Peripheral Wiener Index of a Graph

The eccentricity of a vertex $v$ is the maximum distance between $v$ and anyother vertex. A vertex with maximum eccentricity is called a peripheral vertex.The peripheral Wiener index $ PW(G)$ of a graph $G$ is defined as the sum ofthe distances between all pairs of peripheral vertices of $G.$ In this paper, weinitiate the study of the peripheral Wiener index and we investigate its basicproperti...

متن کامل

Some Ramsey numbers for complete bipartite graphs

Upper bounds are determined for the Ramsey number ](m,n), 2 :; m n. These bounds are attained for infinitely many n in case of m 3 and are fairly close to the exact value for every m if n is sufficiently large.

متن کامل

on a relation between szeged and wiener indices of bipartite graphs

hansen et‎. ‎al.‎, ‎using the autographix software ‎package‎, ‎conjectured that the szeged index $sz(g)$ and the‎ ‎wiener index $w(g)$ of a connected bipartite graph $g$ with $n geq ‎4$ vertices and $m geq n$ edges‎, ‎obeys the relation‎ ‎$sz(g)-w(g) geq 4n-8$‎. ‎moreover‎, ‎this bound would be the best possible‎. ‎this paper offers a proof to this conjecture‎.

متن کامل

A graph polynomial for independent sets of bipartite graphs

We introduce a new graph polynomial that encodes interesting properties of graphs, for example, the number of matchings, the number of perfect matchings, and, for bipartite graphs, the number of independent sets (#BIS). We analyse the complexity of exact evaluation of the polynomial at rational points and show a dichotomy result: for most points exact evaluation is #P-hard (assuming the general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 1995

ISSN: 0893-9659

DOI: 10.1016/0893-9659(95)00067-z